A Crank–Nicolson finite difference scheme for the Riesz space fractional-order parabolic-type sine-Gordon equation
نویسندگان
چکیده
منابع مشابه
The new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملA Fractional Trapezoidal Rule Type Difference Scheme for Fractional Order Integro-differential Equation
A fractional trapezoidal rule type difference scheme for fractional order integro-differential equation is considered. The equation is discretized in time by means of a method based on the trapezoidal rule: while the time derivative is approximated by the standard trapezoidal rule, the integral term is discretized by means of a fractional quadrature rule constructed again from the trapezoidal r...
متن کاملA Reliable Treatment of Homotopy Perturbation Method for the Sine-gordon Equation of Arbitrary (fractional) Order
In this paper, the reliable treatment of homotopy perturbation method (HPM) [19] is applied to obtain the solution of the sine-Gordon partial di¤erential equation of arbitrary (fractional) order. The advantage of this algorithm is its ability to provide the analytical or approximate solutions to nonlinear equations with the capability to overcome the di¢ culty that arises in calculating complic...
متن کاملA nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of CD4^{+} t-cells
In this paper, we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells. We study the effect of the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of the presented model. The nonstandard finite difference (NSFD) scheme is implemented to study the dynamic behaviors in the fractional--order HIV-1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2018
ISSN: 1687-1847
DOI: 10.1186/s13662-018-1674-z